IJMLR712201 | ijmlr
top of page
Research Article

      Abstract    

        

HOME

INVESTIGATION OF ANTIBIOTIC AND ANTISEPTIC RESISTANCE GENES IN METHICILLIN-RESISTANT AND METHICILLIN-SUSCEPTIBLE STAPHYLOCOCCUS AUREUS ISOLATES

 

Cagla Ayabaktı, Ozkan Aslantas, Mucella Bayırlı, Burcin Ozer

ABSTRACT: Aim: This study aimed to determine the antibiotic susceptibility of Staphylococcus aureus isolated from different clinical materials sent to the Microbiology Laboratory of Hatay Mustafa Kemal University Hospital, to investigate the mechanisms mediating antibiotic and antiseptic resistance, to determine the SCCmec type of methicillin-resistant isolates. Materials and Method: Overall, 187 S. aureus were included in the study. Antibiotic susceptibilities of the isolates were performed by the disc diffusion method and evaluated according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) criteria. Antibiotic resistance, antiseptic resistance, and Staphylococcal Cassette Chromosome mec (SCCmec) types in MRSA strains were investigated using polymerase chain reaction (PCR).  Results: While all of the isolates were found to be susceptible to linezolid and vancomycin; various rates of resistance for penicillin (87.1%), cefoxitin (49.93%), erythromycin (19.79%), ciprofloxacin (13.37%), tetracycline (11.23%), clindamycin (10.16%), trimethoprim-sulfamethoxazole (8.02%), gentamicin (17.82%), fusidic acid (64.2%) and rifampin (1.07%) were determined.  A statistically significant difference was found between MRSA and MSSA strains in terms of MDR phenotype rates (p=0.001). Among S. aureus isolates, single resistance genes or various combinations of resistance genes were detected. SCCmec type III (52.4%) was the most common SCCmec type.  Conclusions: The results of this study indicated that current control strategies should be revised to minimize antibiotic resistance and periodic surveillance studies must be carried out.

KEYWORD:  Staphylococcus aureus, antibiotic resistance, antiseptic resistance, SCCmec typing

REFERENCES:

  1. [1]. Chandler CIR. Current accounts of antibiotic resistance: stabilization, individualization and antibiotics as infrastructure. Palgrave Commun 2019; 5:53.

  2. [2]. Pollitt EJG, Szkuta PT, Burns N, Foster SJ. Staphylococcus aureus infection dynamics. PLoS Pathog 2018; 4, 6: e1007112.

  3. [3]. Otto M. MRSA virulence and spread. Cell Microbiol 2012; 14, 10:1513–1521.

  4. [4]. Chambers HF, Deleo FR. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 2009; 7, 9:629-641.

  5. [5]. Zha GF, Wang SM, Rakesh KP, Bukhari SNA, Manukumar HM, Vivek HK, Mallesha N, Qin HL. Discovery of novel arylethenesulfonyl fluorides as potential candidates against methicillin-resistant of Staphylococcus aureus (MRSA) for overcoming multidrug resistance of bacterial infections. Eur J Med Chem 2019; 162:364–377.

  6. [6]. Peterson E, Kaur P. Antibiotic resistance mechanisms in bacteria: relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Review. Front Microbiol 2018; 9:2928.

  7. [7]. Kakoullis L, Papachristodoulou E, Chra P, Panos G. Mechanisms of antibiotic resistance in important Gram-positive and Gram-negative pathogens and novel antibiotic solutions. Antibiotics 2021; 10:415.

  8. [8]. Sidhu MS, Heir E, Leegaard T, Wiger K, Holck A. Frequency of disinfectant resistance genes and genetic linkage with beta-lactamase transposon Tn552 among clinical staphylococci. Antimicrob Agents Chemother 2002; 46:2797–2803.

  9. [9]. Wassenaar TM, Ussery D, Nielsen LN, Ingmer H. Review and phylogenetic analysis of qac genes that reduce susceptibility to quaternary ammonium compounds in Staphylococcus species. Eur J Microbiol Immunol (Bp) 2015; 5:44–61.

  10. [10]. The European Committee on Antimicrobial Susceptibility Testing (EUCAST). 2021. Breakpoint tables for interpretation of MICs and zone diameters. Version 11.0 http://www.eucast.org.

  11. [11]. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Vatapoulos A, Weber JT, Monnet DL. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18, 3:268-81.

  12. [12]. Ahmed W, Neubauer H, Tomaso H, El Hofy FI, Monecke S, Abdeltawab AA, et al. Characterization of Staphylococci and Streptococci Isolated from Milk of Bovides with Mastitis in Egypt. Pathogens 2020; 20209:381.  

  13. [13]. Olsen JE, Christensen H, Aarestrup FM. Diversity and evolution of blaZ from Staphylococcus aureus and coagulase-negative staphylococci. J Antimicrob Chemother 2006; 57:450–460.

  14. [14]. Choi SM, Kim SH, Kim HJ, Lee DG, Choi JH, Yoo JH, et al. Multiplex PCR for the detection of genes encoding aminoglycoside modifying enzymes and methicillin resistance among Staphylococcus species. J Korean Med Sci 2003; 18, 5:631-536.

  15. [15]. Strommenger B, Kettlitz C, Werner G, Witte W. Multiplex PCR assay for simultaneous detection of nine clinically relevant antibiotic resistance genes in Staphylococcus aureus. J Clin Microbiol 2003; 41:4089-4094.

  16. [16]. Lina G, Quaglia A, Reverdy ME, Leclercq R, Vandenesch F,  Etiene J. Distribution of genes encoding resistance to macrolides, lincosamides, and streptogramins among staphylococci. Antimicrob Agents Chemother 1999; 43:1062-1066.

  17. [17]. McLaws F, Chopra I, O'Neill AJ. High prevalence of resistance to fusidic acid in clinical isolates of Staphylococcus epidermidis. J Antimicrob Chemother 2008; 61:1040-1043.

  18. [18]. Noguchi N, Hase M, Kitta M, Sasatsu M, Deguchi K, Kono M. Antiseptic
    susceptibility and distribution of antiseptic resistance genes in methicillin resistant Staphylococcus aureus. FEMS Microbiol Lett 1999; 172:247–53.

  19. [19]. Bjorland J, Steinum T, Kvitle B, Waage S, Sunde M, Heir E. Widespread
    distribution of disinfectant resistance genes among staphylococci of bovine
    and caprine origin in Norway. J Clin Microbiol 2005; 43:4363–8.

  20. [20]. Kondo Y, Ito T, Ma XX, Watanabe S, Kreiswirth BN, Etienne J, Hiramatsu K. Combination of multiplex PCRs for staphylococcal cassette chromosome mec type assignment: rapid identification system for mec, ccr, and major differences in junkyard regions. Antimicrob Agents Chemother 2007; 51:264-274.

  21. [21]. Schultz F, Anywar G, Tang H, Chassagne F, Lyles JT, Garbe LA, et al. Targeting ESKAPE pathogens with anti-infective medicinal plants from the Greater Mpigi region in Uganda. Sci Rep 2020; 10, 1:11935.

  22. [22]. Özel Y, Büyükzengin KB, Yavuz MT. Investigation of antibiotic resistance profile of methicillin-resistant and susceptible Staphylococcus aureus strains isolated from clinical samples. ANKEM Derg 2017; 31, 2:41-7.

  23. [23]. Tanrıverdi Çaycı Y, Hasli F, Bilgin K, Birinci A. Evaluation of susceptibility of Staphylococcus aureus strains that isolated from blood cultures in Samsun Ondokuz Mayıs University Hospital between 2014-2017. Kocaeli Üniv Sağ Bil Derg 2017; 4, 1:20-22.

  24. [24]. Kılıç S, Beşirbellioğlu B, Kılıç A, Pasha A. Methicillin resistant Staphylococcus aureus infections determined at a training hospital in the years of 2003-2004. Gulhane Medical Journal 2005; 47, 3:195-198.

  25. [25]. Ventola CL. The antibiotic resistance crisis: Part 1: Causes and threats. Pharm Ther. 2015; 40: 277–283.

  26. [26]. Yılmaz EŞ, Aslantaş Ö Antimicrobial resistance and underlying mechanisms in Staphylococcus aureus isolates. Asian Pac J Trop Med 2017; 10, 11:1059-1064.

  27. [27]. Duran N, Ozer B, Duran GG, Onlen Y, Demir C. Antibiotic resistance genes & susceptibility patterns in staphylococci.  Indian J Med Res 2012; 135, 3:389-96.

  28. [28]. Miklasińska-Majdanik M. Mechanisms of resistance to macrolide antibiotics among Staphylococcus aureus. Antibiotics (Basel) 2021; 10, 11:1406.

  29. [29]. Yıldız Ö, Çoban AY, Şener AG, Coşkuner SA, Bayramoğlu G, Güdücüoğlu H, Özyurt M, Tatman-Otkun M, Karabiber N, Özkütük N, Aktepe O, Öncü S, Arslan U, Bozdoğan B. Antimicrobial susceptibility and resistance mechanisms of methicillin resistant Staphylococcus aureus isolated from 12 Hospitals in Turkey. Ann Clin Microbiol Antimicrob 2014; 13:44.

  30. [30]. Shmitz FJ, Fluit AC, Gondolf M, Beyrau R, Lindenlauf E, Verhoef J, Heinz HP, Jones ME. The prevalence of aminoglycoside resistance and corresponding resistance genes in clinical isolates of staphylococci from 19 European hospitals. J Antimicrob Chemother 1999; 43, 2:253-9.

  31. [31]. Sundlov JA, Gulick AM. Insights into resistance against lincosamide antibiotics. Structure 2009; 17:1549–50.

  32. [32]. Dobie D, Gray J. Fusidic acid resistance in Staphylococcus aureus. Arch Dis Child 2004; 89:74–77.

  33. [33]. Nergiz S, Atmaca S, Ozekinci T, Tekin A. Fusidic acid resistance in Staphylococcus aureus strains in an interval of ten years (2001–2011). Turkiye Klinikleri J Med Sci 2012; 32, 6:1668-1672.

  34. [34]. Yiğit N, Aktas¸ AE, Al FD. Methicillin, fusidic acid and mupirocin
    resistance in staphylococci isolated from clinical specimens. Turk Hij Den Biyol Derg 2008; 65, 1: 17-23.

  35. [35]. Azap A, Aygün H, Özkan S, Memikoğlu O, Yılmaz Bozkurt G, Genç A, Şahintürk H, Tekeli E. In-vitro activitiy of fusidic acid against Staphylococcus aureus. J Ankara Univ Fac Med 2005; 58:39-41.

  36. [36]. Dündar D, Wilke A, Sayan M, Koç MM, Akan OA, Sümerkan B, Saltoğlu N, Yaman A, Ayaz C, Köksal I. Epidemiological and molecular characteristics of meticillin-resistant Staphylococcus aureus in Turkey: A multicentre study. J Glob Antimicrob Resist 2016; 6:44–49.

  37. [37]. Bozdoğan B, Yıldız Ö, Oryaşin E, Kırdar S, Gülcü B, Aktepe O, Arslan U, Bayramoğlu G, Çoban AY, Coşkuner SA, Güdücüoğlu H, Karabiber N, Öncü S, Otkun MT, Özkütük N, Özyurt M,Şener AG. t030, Türkiye'deki hastanelerden izole edilen metisiline dirençli Staphylococcus aureus izolatları arasında en yaygın spa tipidir. Mikrobiyol Bul 2013; 47, 4:571-581.

  38. [38]. Demirci M, Yığın A, Yıldız Zeyrek F. In silico analysis of virulence and resistance genes of livestock-associated Staphylococcus aureus ST398 detected in humans. J Harran Univ Med Fac 2021; 18, 2:186-192.

  39. [39]. Iğnak S, Nakipoğlu Y, Gürler B. Frequency of antiseptic resistance genes in
    clinical staphylococci and enterococci isolates in Turkey. Antimicrob Resist Infect Control 2017; 6:88.

  40. [40]. Nakipoglu Y, Iğnak S, Gürler N, Gürler B. Investigation of the prevalence of antiseptic resistance genes (qacA/B and smr) and antibiotic resistance in clinical Staphylococcus aureus strains. Mikrobiyol Bul 2012; 46, 2:180-189.

  41. [41]. Duran N, Temiz M, Duran GG, Eryılmaz N, Jenedi K. Relationship between
    the resistance genes to quaternary ammonium compounds and antibiotic
    resistance in staphylococci isolated from surgical site infections. Med Sci
    Monit 2014; 20:544–50.

 To cite this article:

AyabaktıC, Aslantas O, Bayırlı M, Ozer B. Investıgatıon of antıbıotıc and antıseptıc resıstance genes ın methıcıllın-resıstant and methıcıllın-susceptıble Staphylococcus aureus ısolates. Int. J. Med. Lab. Res. 2022; 7,1:1-10. http://doi.org/10.35503/IJMLR.2022.71

bottom of page