IJMLR431901
top of page
Research Articles

      Abstract    

        

HOME

IMMUNOHISTOCHEMISTRY OPTIMISATION OF SOME TUMOUR SUPPRESSOR GENES IN CHRONIC OBSTRUCTIVE PULMONARY DISEASE ON FORMALIN FIXED PARAFFIN EMBEDDED TISSUE SECTIONS

Davou GI, Ekwempu AI, BotD, Chuwang NJ, Adisa JO

 

ABSTRACT: Background: Lung diseases has been shown to be among the most occurring diseases globally with diseases ranging from self-limiting flues to life threatening chronic diseases such as chronic obstructive pulmonary disease (COPD) and lung malignancies. Tobacco has been identified as the major singular risk factor for the pathogenesis of chronic pulmonary diseases. The incidence of primary lung carcinoma (PLC) is increased in COPD Patients due to an existing impairment in normal lung function. This study was aimed at carrying out preliminary IHC optimisation for p53, TTC5, Bax and p21 tumour suppression genes on COPD tissue sections. Method: Several IHC staining using the avidin- biotin complex kit (ABC) were carried out to express the four genes using different staining conditions and different primary antibody dilutions. Results: Our study revealed high-level expression of the four tumour suppression genes on COPD tissue sections with 1:250, 1:500 1: 500 and 1:100 optimum primary antibody dilutions for p53, TTC5, Bax and p21 genes respectively. All experiments for optimum results were carried out under 21⁰C room temperature. Conclusions: These findings revealed an active DNA -8damage response, even though we are still far from understanding the current function of p53 and its downstream genes in this particular tissue. Further investigations are required and the application of more techniques for an expanded study with more access to lung cancer tissue sections from different cohorts, in order to fully understand the role of p53 and the other genes that respond to DNA damage in lung cancer therapy.

 

KEY WORDS: IHC, Optimisation, COPD, Lung cancer, DNA damage response, P53, Laboratory research

REFERENCES:

  1. ABBAS, T. & DUTTA, A. J. N. R. C. 2009. p21 in cancer: intricate networks and multiple activities. 9 400.

  2. DE TORRES, J. P., BASTARRIKA, G., WISNIVESKY, J. P., ALCAIDE, A. B., CAMPO, A., SEIJO, L. M., PUEYO, J. C., VILLANUEVA, A., LOZANO, M. D. & MONTES, U. J. C. 2007. Assessing the relationship between lung cancer risk and emphysema detected on low-dose CT of the chest. 132 1932-1938.

  3. DEMONACOS, C., KRSTIC-DEMONACOS, M. & LA THANGUE, N. B. J. M. C. 2001. A TPR motif cofactor contributes to p300 activity in the p53 response. 8 71-84.

  4. DURAIYAN, J., GOVINDARAJAN, R., KALIYAPPAN, K., PALANISAMY, M. J. J. O. P. & SCIENCES, B. 2012. Applications of immunohistochemistry. 4 S307.

  5. FERKOL, T. & SCHRAUFNAGEL, D. J. A. O. T. A. T. S. 2014. The global burden of respiratory disease. 11 404-406.

  6. GARCÍA-CRUZ, R., CAMATS, M., CALIN, G. A., LIU, C.-G., VOLINIA, S., TACCIOLI, C., CROCE, C. M. & BACH-ELIAS, M. J. B. M. G. 2015. The role of p19 and p21 H-Ras proteins and mutants in miRNA expression in cancer and a Costello syndrome cell model. 16 46.

  7. GARTEL, A. L. & RADHAKRISHNAN, S. K. J. C. R. 2005. Lost in transcription: p21 repression, mechanisms, and consequences. 65 3980-3985.

  8. GROßE, L., WURM, C. A., BRÜSER, C., NEUMANN, D., JANS, D. C. & JAKOBS, S. J. T. E. J. 2016. Bax assembles into large ring‐like structures remodeling the mitochondrial outer membrane in apoptosis. 35, 402-413.

  9. HALDAR, S., NEGRINI, M., MONNE, M., SABBIONI, S. & CROCE, C. M. J. C. R. 1994. Down-regulation of bcl-2 by p53 in breast cancer cells. 54 2095-2097.

  10. JOHNSON, N. J. J. O. D. E. 2001. Tobacco use and oral cancer: a global perspective. 65 328-339.

  11. KNUDSON, A. G. J. N. R. C. 2001. Two genetic hits (more or less) to cancer. 1 157.

  12. LACE, G., INCE, P., BRAYNE, C., SAVVA, G., MATTHEWS, F., DE SILVA, R., SIMPSON, J., WHARTON, S. J. D. & DISORDERS, G. C. 2012. Mesial temporal astrocyte tau pathology in the MRC-CFAS ageing brain cohort. 34 15-24.

  13. LANE, D. P. J. N. 1992. Cancer. p53, guardian of the genome. 358 15-16.

  14. LEVINE, A. J. J. C. 1997. p53, the cellular gatekeeper for growth and division. 88 323-331.

  15. MANNINO, D. M. & BRAMAN, S. J. P. O. T. A. T. S. 2007. The epidemiology and economics of chronic obstructive pulmonary disease. 4 502-506.

  16. MAYNE, S. T., BUENCONSEJO, J. & JANERICH, D. T. J. A. J. O. E. 1999. Previous lung disease and risk of lung cancer among men and women nonsmokers. 149 13-20.

  17. MOHAN, H. & MOHAN, S. 2011. , JP Medical Ltd.

  18. RAJENDRAN, R. 2009. , Elsevier India.

  19. RAVIV, S., HAWKINS, K. A., DECAMP JR, M. M., KALHAN, R. J. A. J. O. R. & MEDICINE, C. C. 2011. Lung cancer in chronic obstructive pulmonary disease: enhancing surgical options and outcomes. 183 1138-1146.

  20. RILEY, T., SONTAG, E., CHEN, P. & LEVINE, A. J. N. R. M. C. B. 2008. Transcriptional control of human p53-regulated genes. 9 402.

  21. RODRIGUEZ, R. & MEUTH, M. J. M. B. O. T. C. 2006. Chk1 and p21 cooperate to prevent apoptosis during DNA replication fork stress. 17 402-412.

  22. TRIVERS, G. E., DE BENEDETTI, V., CAWLEY, H. L., CARON, G., HARRINGTON, A. M., BENNETT, W. P., JETT, J. R., COLBY, T. V., TAZELAAR, H. & PAIROLERO, P. J. C. C. R. 1996. Anti-p53 antibodies in sera from patients with chronic obstructive pulmonary disease can predate a diagnosis of cancer. 2 1767-1775.

  23. WILLIS, S. N. & ADAMS, J. M. J. C. O. I. C. B. 2005. Life in the balance: how BH3-only proteins induce apoptosis. 17 617-625.

  24. XIANG, H., KINOSHITA, Y., KNUDSON, C. M., KORSMEYER, S. J., SCHWARTZKROIN, P. A. & MORRISON, R. S. J. J. O. N. 1998. Bax involvement in p53-mediated neuronal cell death. 18 1363-1373.

  25. YOKOTA, J. J. C. 2000. Tumor progression and metastasis. 21 497-503.

bottom of page