top of page
Research Article

      Abstract    

        

HOME

VERIFICATION OF ANALYTICAL PERFORMANCE OF FSH ASSAY ON THE ABBOTT ARCHITECT CI®: EXPERIENCE OF THE CENTRAL LABORATORY OF MOHAMMED VI UNIVERSITY HOSPITAL OF OUJDA

N Ikhlass, E Dounia, El H Sebbar, M Choukri

ABSTRACT:

Verification of analytical methods is a fundamental requirement for ensuring the accuracy, precision, and reliability of laboratory results, particularly for clinically important biomarkers such as follicle-stimulating hormone (FSH). This study evaluates the analytical performance of the FSH assay performed using chemiluminescent microparticle immunoassay (CMIA) on the ABBOTT ARCHITECT Ci analyzer in the central laboratory of Mohammed VI University Hospital. The verification process included two phases: assessment of intermediate precision over a 30-day period using three levels of internal quality control, and evaluation of repeatability based on 30 consecutive measurements for three concentration levels. Intermediate precision showed coefficients of variation (CVs) of 5.55%, 6.27%, and 9.08%, while repeatability demonstrated excellent performance with CVs of 3.96%, 3.19%, and 2.22% across low, medium, and high levels, respectively. All results met the acceptance criteria defined by RICOS and FSCB. These findings confirm that the CMIA FSH assay provides reliable, reproducible, and clinically robust measurements. Incorporating this verification into routine practice strengthens the laboratory’s quality management system and ensures that FSH results are accurate, reproducible, and directly supportive of clinical decision-making.

Keywords: FSH; Analytical performance; Repeatability; Reproducibility; Architect ABOTT   Ci Analyzer; CMIA.Alinityi®

REFERENCE: 

  1. [1]. Vassault A, Hulin A, Chapuzet E, Arnaud J, Giroud C. Verification/validation of the performance of an analytical method. Ann Biol Clin (Paris). 2011 ;69(3) :331–345.

  2. [2]. Pum J. A practical guide to validation and verification of analytical methods in the clinical laboratory. Adv Clin Chem. 2019 ;90 :215–281.

  3. [3]. Chappel SC, Howles C. Reevaluation of the roles of luteinizing hormone and follicle-stimulating hormone in the ovulatory process. Hum Reprod. 1991 ;6(9) :1206–1212.

  4. [4]. Simoni M, Nieschlag E. FSH in therapy: physiological basis, new preparations and clinical use. Reprod Med Rev. 1995 ;4(3) :163–177.

  5. [5]. Gudermann T, Nürnberg B, Schultz G. Receptors and G proteins as primary components of transmembrane signal transduction. I. G-protein–coupled receptors: structure and function. J Mol Med. 1995;73(2):51–63.

  6. [6]. Burger HG. Diagnostic role of follicle-stimulating hormone (FSH) measurements during the menopausal transition. Eur J Endocrinol. 1994 ;130(1):38–42.

  7. [7]. Djaladat H, Rahimi HR, Farrokhi F, Mehrsai A, Pourmand G. Serum follicle-stimulating hormone and testicular histopathology in azoospermic men. Urol J. 2008 ;5(3):164–168.

  8. [8]. Comité Français d’Accréditation (COFRAC). Technical guide for accreditation: verification (scope A) / validation (scope B) of medical biology methods. Document SH-GTA-04, Revision 01. Paris : COFRAC ; 2016.

  9. [9]. da Silveira Nantes Button VL. Introduction to biomedical variables transducing. In: Biomedical Instrumentation. Oxford : Elsevier ; 2015. p. 1–29.

  10. [10]. Ministère de la Santé. Arrêté du 26 novembre 1999 relatif à la bonne exécution des analyses de biologie médicale. J Off Rep Fr. 1999.

  11. [11]. International Organization for Standardization. ISO 15189:2012 – Medical laboratories: Requirements for quality and competence. Geneva : ISO ; 2012.

  12. [12]. Williams BJ, Knowles C, Treanor D. Maintaining quality diagnosis with digital pathology: a practical guide to ISO 15189 accreditation. J Clin Pathol. 2019 ;72(10):663–668.

  13. [13]. Westgard JO. Internal quality control: planning and management. J Clin Pathol. 2003 ;56(10):778–785.

  14. [14]. Clinical and Laboratory Standards Institute (CLSI). User verification of precision and estimation of bias; Approved guideline. EP15-A3. Wayne (PA): CLSI ; 2014.

  15. [15]. Lyons J, Grenache DG, Gronowski AM. Analytical performance of the Abbott ARCHITECT immunoassay platform. Clin Chem Lab Med. 2017 ;55(4):e75–e78.

  16. [16]. Garg A, Ersfeld DL, Vesper HW. Analytical performance of chemiluminescent microparticle immunoassays for reproductive hormones. Clin Biochem. 2016 ;49(13–14):1030–1036.

  17. [17]. Hansen M, Gjerstad A, Fougner KJ. Evaluation of the Abbott ARCHITECT iSystem for endocrine testing. Clin Chem Lab Med. 2014 ;52(2):153–160.

  18. [18]. Nelson SM. Biomarkers of ovarian reserve: current and future applications. Hum Reprod Update. 2011 ;17(6):1–13.

  19. [19]. Winters SJ. FSH in male reproductive disorders: physiology and clinical interpretation. Endocr Rev. 2009 ;30(2):204–224.

  20. [20]. Anawalt BD. Approach to male infertility and hypogonadism. J Clin Endocrinol Metab. 2013 ;98(9):3532–3542.

  21. [21]. Barfield D, Knight J, Smith AF. Long-term precision of hormone immunoassays in clinical laboratories. Clin Chim Acta. 2015 ;448 :123–129.

  22. [22]. Wu AHB. Method evaluation and comparison in immunoassays. Clin Chim Acta. 2019 ;495 :483–490.

  23. [23]. Roberts WL. Precision goals in hormone immunoassays: recommendations for clinical laboratories. Clin Chem. 2004 ;50(10):1830–1835.

  24. [24]. Bartlett WA, Sandberg S, Jones GRD. Analytical performance specifications based on biological variation. Clin Chem Lab Med. 2015 ;53(6):833–835.

  25. [25]. Aarsand AK, Røraas T, Sandberg S. The European Federation of Clinical Chemistry and Laboratory Medicine biological variation database. Clin Chem Lab Med. 2020 ;58(1):128–138.

 To cite this article:

Ikhlass N, Dounia E, Sebbar El H, Choukri M, Verification of analytical performance of FSH assay on the Abbott ARCHITECT  ci®: Experience of the central laboratory of Mohammed VI University Hospital of Oujda.  Int. J. Med. Lab. Res. 2025; 10(3):25-32. http://doi.org/10.35503/IJMLR.2025.10304

bottom of page