top of page
Research Article






Obadire SO,  Mitsan O, Odewusi OO, Ige IP, Ugbomoiko DO, Oke OC

Abstract: Proteus species are found in multiple environmental habitats, including long-term care facilities, hospitals, and can also cause both community and nosocomial infections. For a long time, Proteus was known to be susceptible to beta-lactam antibiotics but nowadays they become resistant. Hence, this study aims to determine the prevalence, antibiotic susceptibility pattern of extended spectrum beta lactamase (ESBL) producing Proteus species across Jigawa State, Northwest Nigeria. 1854 different clinical specimens were analysed of which 191 Proteus species were isolated through standard biochemical tests and used for this study from selected hospital between November, 2021 to August, 2022. Modified Kirby-Bauer disk diffusion method was used to test the susceptibility of the Proteus isolates to nine different antimicrobial agents. Double Disc Synergy Test (DDST) was used for phenotypic detection of ESBL in isolates. The prevalence of ESBL producing Proteus mirabilis was 11.8%. None of the Proteus vulgaris isolates in this study was found to be ESBL producers. Male patients were infected with more ESBL producers than those from female counterparts (Male vs Female; 12.5% vs 4.8%). Proteus mirabilis were observed to be significantly more susceptible to Ampicillin (P= 0.003), Gentamycin (P=0.024) and Cotrimoxazole (P=0.014). All ESBL producing Proteus mirabilis were resistant to three or more classes of antibiotics used in this study. This study reveals the occurrence of ESBL producing Proteus species in this environment. All the ESBL producing Proteus mirabilis encountered in this study exhibited multidrug resistance. Prudent use of antimicrobial agents is advocated in order to tame the trend.

KEYWORDS: Proteus species, Prevalence, ESBL producing Proteus mirabilis, Multidrug resistance


  1. [1]. Sengupta, S., Human, P., Girag, AM Shivananda, PG.  Acinetobacter bacteria: An   emergency nosocomial pathogen in the burns unit. Manipal, India. Burns. 2001;27: 140-  144

  2. [2]. Singh, NP.,Goyal, R., Machanda, V., Das, S., Kaur, Z. Talwar, V.  Changing trends in the bacteriology of burns in the burns unit. Delhi, India Burns. 2003; 29: 129-132.

  3. [3]. .Enabulele, IO. Yah, SC., Yusuf, EO. Eghafona, NO.   Emerging quinolone               resistant transfer genes among gram negative bacteria isolated from the faeces of HIV/AIDS patients attending some clinics and hospitals in the city of Benin, Edo state,                Nigeria.Online Journal of Health and Allied Sciences. 2006; 5(3): 142-152

  4. [4]. Yusuf, I, Arzai, AH.  First detection of carbapenemases producing clinical bacterial pathogens in Kano, Nigeria Biol. Environ. Sci. J. Trop.  2011; 8 (3): 163 – 167.

  5. [5]. Bush, K.., Jacoby, GA. Medeiros, AA.  A Functional Classification Scheme for β-   lactamases and its Correlation with Molecular Structure. Antimicrob. Agents Chemother. 1995;39:1211-33.

  6. [6]. Datta,, N. Kontomichalou, P. "Penicillinase synthesis controlled by infectious R factors in Enterobacteriaceae." Nature. 1965; 208: 239-41.

  7. [7]. .Paterson, DL. Bonomo, RA. Extended-spectrum β-lactamases: A clinical update. Clin Microbiol Rev. 2005;18:657–86. 

  8. [8]. Pitout, JD., Nordmann, P., Kevin, B., Laupland, KB. Poirel, L. Emergence of Enterobacteriaceae producing extended-spectrum β-lactamases (ESBLs) in the community. J Antimicrob Chemother.2005; 56:52–9. 

  9. [9]. Paterson, DL. Recommendation for treatment of severe infections caused by             Enterobacteriaceae producing extended-spectrum β-lactamases (ESBLs) Clin        Microbiol Infect. 2000; 6:460–3.

  10. [10]. Yusha’u, M., Olonitola, SO. Aliyu, BS.  Prevalence of Extended – Spectrum Beta lactamases (ESBLs) Among members of the Enterobacteriaceae isolates obtained from Mohammed Abdullahi Wase Specialist Hospital, Kano, Nigeria. International Journal of Pure and Applied Sciences 2010; 1 (3): 42 – 48

  11. [11]. Naing, L, Winn, T. Rusli, BN.  Sample Size Calculator for Prevalence Studies.

  12. [12]. Barrow, GIR. Felthan KA.  Cowan and Steel’s Manual for the Identification of Medical Bacteria. 3rd Ed. Cambridge University Press. Cambridge UK. 2003; 351-353.

  13. [13]. Cheesbrough, M.   District labotatory practice in tropical countries part two.2nd edn. Cambridge University Press, UK. 2012; Pp. 143- 180

  14. [14]. Clinical Laboratory Standards Institute.  Performansce standards for antimicrobial susceptibility testing. 21st informational supplement. CLSI document M100-S18. CLSI: Wayne, PA.2012

  15. [15]. Centres for Disease Control and Prevention. Laboratory detection of extended-spectrum b-lactamases (ESBLs). Atlanta: CDC, [Cited 2012 Mar 12].

  16. [16]. Drieux, L., Brossier, F., Sougakoff, W. Jarlier, V.  Phenotypic detection of extended-spectrum betalactamase production in Enterobacteriaceae: review and                bench guide.         Clinical Microbiology and Infection. 2008; 14: 90-103.

  17. [17]. Yusuf, I., Haruna, M. Yahaya, H.  Prevalence and antibiotic susceptibility of ampc and ESBL producing clinical isolates at a tertiary health care center in Kano, Northwest        Nigeria. afr. J. Cln. Exper. Microbiol 2013; 14(2): 109-119

  18. [18]. Nuhu, T., Rebecca, OB., Adebola, TO. Busayo, OO. Systematic review on the        prevalence of extended-spectrum beta lactamase-producing Gram-negative bacteria in     Nigeria. Journal of Global Antimicrobial Resistance. 2020:22; 488-496.

  19. [19]. Aibinu, IE, Ohaegbulam,VC., Adenipekun, EA., Ogunsola, FT., Odugbemi, TO.    Mee,       BJ.  Extended-Spectrum β-Lactamase Enzymes in Clinical Isolates of              Enterobacter        species from Lagos, Nigeria. J Clin Microbiol. 2003;41(5): 2197– 2200.

  20. [20]. Hassan, RM. Hammad, MN.  Prevalence and Antimicrobial Susceptibility Pattern of             Extended Spectrum β-Lactamases Producing Escherichia coli, Klebsiella               pneumoniae          and Proteus mirabilis in Khartoum Sudan. Am J Res Commun. 2016; 4(8):60-6.

  21. [21]. Laura, P., Roberta, M., Lucia, P., Cecillia, M., Ernesto, G., Gianfranco, A., Egidio, R.          Gian, M. R. Emerging extended-spectrum beta-lactamases in Proteus mirabilis.      Journal of Clinical Microbiology. 2002; 40: (4) 1549-1552

  22. [22]. Bauernfeind, A., Holley, M., Jungwirth, R., Mangold, P., Röhnisch, T. Schweighart, S. A new plasmidic cefotaximase from patients infected with Salmonella typhimurium. Infection. 1992; 20(3):158-63.

  23. [23]. Bali EB., Acik, L. Sultan, N.  Phenotypic and molecular characterization of SHV, TEM, CTX-           M and    extended-spectrum beta-lactamase produced by Escherichia                 coli,        Acinobacter          baumannii and Klebsiella isolates in a Turkish hospital. Afr J Microbiol Res. 2010; 4(8):650-4.

  24. [24]. Osazuwa, F. Osazuwa, EO. Detection of extended spectrum beta-lactamase producing Klebsiella pneumoniae and their rates to antibiotics in University of Benin Teaching Hospital, Benin City, Nigeria. Research Journal of Pharmaceutical, Biological           and Chemical Sciences (RJPBCS ). 2011; 2(1):603 -05.

  25. [25]. Jitendra, KP., Akanksha, N. Shikhar, T. Prevalence of proteus species in clinical    samples, antibiotic sensitivity pattern and ESBL production. International journal of              current microbiology and applied sciences. 2013; 2 (10): 253-261.

 To cite this article:

Obadire SO, Mitsan O, Odewusi OO, Ige IP, Ugbomoiko DO, Oke OC. Extended spectrum beta-lactamase (esbl) producing proteus species isolated from clinical specimens from selected hospitals in jigawa state, north-west nigeria. Int. J. Med. Lab. Res. 2023; 8,1:1-7.

bottom of page